דוד החשמל לחמם יותר מים ולשלם פחות מדריך לשימוש יעיל בדוד החשמל
|
|
- Ἀγλαΐη Κορομηλάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 דוד החשמל לחמם יותר מים ולשלם פחות מדריך לשימוש יעיל בדוד החשמל
2 נא להכיר דוד החשמל הביתי דוד החשמל המספק מים חמים גורם לעיתים לחלק נכבד מהוצאות החשמל בביתÆ כאן תמצאו עצות שימושיות כיצד להפיק מן הדוד כמה שיותר ולשלם כמה שפחותÆ הדוד הביתי מצופה בבידוד תרמי ומצויד בגוף חימום חשמלי ובתרמוסטט המווסת את חימום המיםÆ גם דוד השמש מתפקד למעשה כדוד חשמל רגיל חימום המים בו בימים שאין די קרינת שמש למשל בחורף נעשה באמצעות גוף חימום חשמליÆ בהתאם לתקנות החשמל קיים בכל דירה מעגל נפרד לדוד לחימום מיםÆ יש להיעזר בחשמלאי מורשה כדי לבדוק אם הספק גוף החימום של הדוד מתאים לגודל המעגל ולמבטח מפסק אוטומטי זעיר או נתיך של המעגל שבלוחÆ כדי לדעת כיצד לחסוך בהוצאות התפעול כדאי להכיר תחילה את כל הגורמים המשפיעים על צריכת החשמל בדוד ±Æ משך ההפעלה של הדוד Æ הרגלי השימוש במים חמים בבית Æ טמפרטורת המים הקרים שבדוד לפני החימום Æ הטמפרטורה לחימום שאליה מכוון הטרמוסטט Ƶ כמות האבנית שהצטברה בדוד Æ תנאי הסביבה של הדוד Æ רמת הבידוד התרמי של הדוד עכשיו כל מה שנותר הוא לבדוק כל גורם לגופו ולראות כיצד לטפל בכל אחד מהםÆ
3 למשך כמה זמן כדאי להפעיל את הדודø כמות המים הנצרכת בפועל היא זו שצריכה להכתיב את משך זמן ההפעלהÆ משך הזמן שבו נמצא הדוד במצב הפעלה כאשר מופעל המתג המחבר אינו שווה בהכרח למשך הזמן שבו פועל גוף החימום הלכה למעשהÆ זאת מפני שהתרמוסטט מפסיק את פעולת גוף החימום כשהמים מגיעים לטמפרטורה שאליה הוא כ ונןÆ כאשר תרד טמפרטורת המים בדוד מתחת לזו המכ וננת תתחיל מחדש פעולת גוף החימוםÆ ככל שהדוד פועל זמן רב יותר כך גדלה כמות המים החמים העומדת לרשותכםÆ לכן במקרה של חימום מים מעבר לכמות הנצרכת שארית המים החמים בדוד מתקררת ונוצר בזבוז אנרגיה וכסףÆ ברור שלא ניתן למנוע את התופעה הזאת לחלוטין אבל ניתן לנסות להעריך את כמות המים שצורכים בני הבית מפני שבהערכה זו טמון החיסכוןÆ יש לבצע כמה ניסיונות כדי לבדוק מהו משך זמן ההפעלה המתאים ביותר בעונות השנה השונותÆ בכמה מים אתם משתמשיםø שימוש במים חמים במקלחת באמבטיה וכן בעת שטיפת כלים או רחיצת ידיים משפיע על כמות האנרגיה הדרושה לחימום המים בדודÆ על אף ששימושים אלה חיוניים אפשר לנקוט צעדים לצמצום הצריכהÆ לדוגמא להשתמש בראשי מקלחת ובראשי ברז המאפשרים את הגברת לחץ המים תוך הקטנת כמות המים הזורמים דרכםÆ בדרך זו אפשר לחסוך הן במים והן בחשמלÆ לסגור את הדלתות והחלונות בחדר האמבטיה בעת הרחצה כדי שלא יחדור קור ועל ידי כך להסתפק במים פחות חמיםÆ לסגור את הברז בזמן שלא משתמשים במים במהלך הרחצהÆ לסבן כלי אוכל לערום בצד ואחר כך לשטוף אותם ברצףÆ
4 מתי כדאי להפעיל את דוד החשמלø ככלל יש להפעיל את הדוד קרוב ככל האפשר למועד השימוש במים במטרה להפחית את איבוד החום בדוד כאשר שומרים בו מים חמיםÆ בדוד מבודד כהלכה יהיה שיעור הפסד החום נמוך והמים החמים יישמרו בו למשך זמן ממושך יחסיתÆ עם זאת החימום המוקדם של המים ושמירתם חמים בדוד מאפשרים לנצל בצורה טובה יותר את חיבור החשמל הקיים בדירתכםÆ חיבור זה קובע למעשה את ההספק המרבי של כלל המכשירים הניתנים להפעלה בו זמנית בדירהÆ מכאן שאם יופעל הדוד בשעות פחות עמוסות שבהן אין שימוש מוגבר במספר מכשירי חשמל בבת אחת תוכלו לפנות מקום להפעלה של מכשיר אחר כגון תנור חימום או מזגןÆ לאיזו טמפרטורה מכוון הטרמוסטטø מומלץ לכוונן את התרמוסטט לטמפרטורה של מעלות צלסיוסÆ כיוונון לטמפרטורה גבוהה יותר מגדיל את איבוד החום מן הדוד מאיץ את הצטברות האבנית וכתוצאה מכך מעלה את צריכת החשמלÆ את כיוונון התרמוסטט רשאי לבצע רק חשמלאי מורשהÆ
5 כיצד משפיעה האבנית המצטברת בדודø הצטברות האבנית אמנם איטית אך כאשר הכמות גדלה היא תופסת חלק נכבד מנפח הדודÆ תופעה זו מאיטה את קצב חימום המים ומגדילה את צריכת החשמלÆ במצב כזה האנרגיה החשמלית משמשת רק בחלקה לחימום המים והיתרה מושקעת בחימום האבניתÆ התוצאה צמצום בכמות המים שניתן היה לקבל באותו זמן לפני ההצטברות המשמעותית של אבנית בדודÆ הורדת הטמפרטורה על ידי כיוונון התרמוסטט עשויה להקטין באופן משמעותי ביותר את כמות האבנית המצטברתÆ אם הזמן הנדרש לחימום המים מתארך יש לפנות לבעל מקצוע מתאים כדי שיבדוק אם הסיבה לכך היא אכן הצטברות יתר של אבניתÆ ניקוי הדוד מהצטברות יתר של אבנית יפחית את זמן החימום ויחסוך חשמלÆ את תופעת הצטברות האבנית אנו מכירים מן הקומקום החימום הופך את המלחים והמינרלים הנמצאים במים לאבנית ובמשך הזמן מצטברת על דפנות הקומקום אבנית בכמויות גדולות בעיקר בתחתיתוÆ כך קורה גם בדודÆ כמות האבנית המצטברת בדוד תלויה בעיקר בטמפרטורת חימום המים בהיקף צריכת המים החמים בדירה ובאיכות המים הקרים הזורמים לדודÆ µ
6 באיזו סביבה נמצא הדודø דוד הממוקם מחוץ לבית וחשוף לתנאי מזג האוויר רוחות וגשמים מאבד יותר חום מאשר דוד הנמצא בתוך הבית במרפסת מוגנת או תחת גג רעפיםÆ לכן רצוי למקם את הדוד במקום מוגן ולדאוג לתקינות הבידוד העוטף אותו ואת צינורות המים היוצאים ממנוÆ מה מצב הבידוד התרמי של הדודø ככל שהסביבה החיצונית קרה יותר הפסדי החום מהדוד גדלים וכך עולה החשיבות של הבידוד התרמי לחיסכון בצריכת החשמל לחימום המיםÆ שכבת הבידוד התרמי המקיפה את הדוד נועדה לשמור על טמפרטורת המים החמים הנאגרים בוÆ אם הבידוד לקוי החום הולך לאיבוד דרך מעטפת הדוד והוא צורך יותר חשמל מן הדרוש בייחוד בחורףÆ הדרך לבדוק זאת היא פשוטה ברגע שהדוד מלא במים חמים יש לגעת בזהירות במעטפתÆ אם היא חמה סימן שקיימת בריחת חום והדוד מבזבז אנרגיה Æ אפשר לתקן זאת לבד אם הדוד נמצא בתוך הבית באמצעות עיטוף הדוד בשמיכות ישנות או בחומרי בידוד מתאימים כמו צמר סלעים אך מוטב להזמין בעל מקצועÆ
7 כיצד מחשבים את צריכת החשמל לחימום מיםø משפחה ממוצעת בת µ נפשות משתמשת על פי רוב בדוד חשמלי בנפח של µ± ליטר עם גוף חימום של µ ואטÆ כאשר טמפרטורת המים בדוד עומדת על כ ± מעלות צלסיוס נדרשות כ שעות כדי לחמם את כל נפח הדוד עד לטמפרטורה של מעלות צלסיוסÆ חישוב צריכת החשמל לחימום המים שבדוד עד לטמפרטורה של מעלות צלסיוס נעשה כך Ƶ קילוואט x שעות ± קוט ש קילוואט שעה עלות הצריכה בדוגמא זו היא ± קוט ש x המחיר לקוט ש העדכני הרשום בחשבון החשמל בש ח לקילוואט שעה ובתוספת מע מ Æ בפועל אנחנו משתמשים לרחצה במים שהם בטמפרטורת הגוף כ צלסיוס Æ טמפרטורה זו מתקבלת מערבוב המים הקרים שבדוגמא הם בטמפרטורה של ± צלסיוס ושל המים החמים מהדוד בטמפרטורה של צלסיוס כך שבפועל ניתן להפיק מאותו דוד כ π ליטר מים בטמפרטורה של צלסיוסÆ להמחשת אפשרויות ניצול כמות המים הזאת נציין את כמויות המים הנצרכות בטמפרטורת שימוש של עד צלסיוס בשימושים שונים עבור אמבטיה אחת כ µ ± ליטרÆ עבור מקלחת אחת כ ליטרÆ עבור נטילת ידיים כ ליטריםÆ יש לציין שבעונות המעבר ובקיץ יורדת צריכת החשמל לחימום המים הן כתוצאה מעליית טמפרטורת המים העומדים בדוד והן עקב הקטנת הפסדי האנרגיה לסביבה בשל עליית טמפרטורת הסביבה Æ
8 איך מפחיתים את צריכת החשמל בדודי שמשø בימי חורף מעוננים מתפקד דוד השמש בצורה דומה לדוד החשמלÆ כלומר החימום בו מתבצע באמצעות גוף חימום חשמליÆ לכן ההתייחסות אליו צריכה להיות כאל דוד חשמל רגיל אך נוסף על הצעדים שהוזכרו יש לבצע את הפעולות הבאות לדאוג לבידוד תרמי נאות של הצינורות המובילים את המים החמים מדוד השמש המותקן על הגג אל תוך הבית כדי למנוע איבוד חום מיותרÆ יש לדאוג לתקינות הבידוד לאורך זמןÆ אחת לשנה לפחות יש לדאוג לניקוי קולטי השמש מן האבק המצטבר על פניהם כדי שלא יאבדו מיעילותםÆ כאשר המערכת הסולארית משותפת לכל דיירי הבניין מערכת קולטים מרכזית המזינה דוודים בכל אחת מדירות הבניין יש לסגור מגופים של צנרת המים בעת הפעלת גוף החימום כדי למנוע בריחת מים חמים לדוודים של השכניםÆ כדאי לבדוק אם יש צורך בגיזום ענפי עצים המטילים צל על הקולטים ומונעים הגעת קרני שמש אליהםÆ
9 האם התקנת שרוול עוזרת לחיסכוןø שרוול הוא כינוי להתקן המאיץ חימום של כמויות מים קטנותÆ הוא מותקן בתוך הדוד בחלקו התחתון סביב גוף החימוםÆ כתוצאה מכך המים המחוממים סביב גוף החימום מוזרמים ישירות לחלקו העליון של הדוד תוך צמצום הערבוב של המים החמים במים הקריםÆ כך מתקצר זמן החימום עבור כמויות קטנות של מיםÆ חסרונו הבולט של ה שרוול הוא הגברת היווצרות אבנית בדפנותיוÆ הוא אף עלול להיסתם ולגרום לשריפת גוף החימוםÆ בדודי חשמל רגילים ללא קולטי שמש התקנת ה שרוול אסורהÆ עם זאת כאשר מדובר בדודי שמש שבהם מופעל גוף החימום החשמלי לפרקי זמן קצרים יחסית בחודשי החורף בלבד ניתן לשקול התקנת שרוול לחיסכון בצריכת החשמלÆ בעת ההחלטה על התקנת שרוול בדוד שמש הקיים בדירה יש לפנות ליצרן הדוד הנושא באחריותÆ התקנת ה שרוול שלא על ידי יצרן הדוד או המתקין שפועל מטעמו עלולה להביא להפסקת האחריות שנותן יצרן הדוד או המתקין שפועל מטעמוÆ ניתן להזמין מראש דוד שמש חדש עם שרוול Æ π
10 מחמם מים מיידי במקום דוד חשמל כדאיø או לא כדאיø מחמם מים מיידי הוא מכשיר חשמלי המחמם את המים תוך כדי זרימתם דרכוÆ יש לו גוף חימום בהספק גבוה מאוד בדרך כלל µ קילוואט אשר פועל רק בשעת השימוש במיםÆ הוא חסכוני יותר מדוד החשמל כיוון שהוא פועל למשך זמן קצר בהרבהÆ הבעיה היא שהספקו הגבוה של המחמם המיידי גורם בזמן הפעלתו לעומס גדול מאוד על החיבור החשמלי לדירה ואפילו לשריפת הנתיךÆ כדי שניתן יהיה להפעיל במקביל עוד מכשירי חשמל בבית תנורי חימום מזגני אוויר או מכשירי מטבח יש צורך לעיתים בעריכת שינויים בלוח החשמל הביתי ובהגדלת החיבור של חברת החשמל לדירהÆ ראוי לציין כי המעגלים החשמליים הקווים המזינים אזורים שונים בדירה הסטנדרטיים הקיימים בדירות מגורים מותאמים להפעלה בו זמנית של מכשירים בהספק כולל של Æ קילוואט או של Æ קילוואטÆ לכן יש צורך בהתקנת מעגל נוסף מיוחד עבור המחמם המיידיÆ כאשר רוכשים מחמם מים מיידי חשוב להקפיד על תיקניותו על מחממי מים חלה חובת עמידה בתקן ישראלי רשמי ועל התקנתו על ידי חשמלאי מורשה בלבדÆ יש להביא בחשבון שמחמם המים המיידי טוב רק לנקודה אחת בבית ולכן אם רוצים מים חמים גם במקלחת וגם בכיור המטבח יש צורך בהתקנת מספר מחממיםÆ לסיכום מחמם מים מיידי הוא חסכוני יותר מדוד חשמל אבל הוא משרת רק נקודת מים אחת והתקנתו מתאפשרת בתנאי שגודל החיבור של חברת החשמל לדירה ומערכת החשמל בתוכה מותאמים לשימוש בוÆ לכן לפני רכישת מחמם מים מיידי יש להתייעץ עם חשמלאי מורשהÆ ±
11 ±±
12 סדרת עלוני מידע זורם ללקוח דוד חשמל לחמם יותר מים ולשלם פחות הופק על ידי היחידה לקשרי הציבור והפרסום המחלקה לתקשורת חזותית בשיתוף אגף השיווק המחלקה לייעול הצריכה עוד עלונים מסדרת מידע זורם לייעול השימוש בחשמל לחיסכון ולבטיחות ניתן להוריד מאתר האינטרנט שלנו או להזמינם בטלפון בשירות ±Æ È ÂÈ Ë Ó
מכשירי חשמל ביתיים. כמה זה עולה לנוø
מכשירי חשמל ביתיים כמה זה עולה לנוø מבוא חשמל האנרגיה היחידה המסוגלת לעשות בשבילנו כל כך הרבה בבית תאורה חימום קירור הפעלת מכשירי הבית השונים והכל בקלות בנוחיות ובניקיון מרבייםÆ הגמישות בשימוש ותחום היישומים
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
דיאגמת פאזת ברזל פחמן
דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.
החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.
גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן
.. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות
הרצאה 7: CTMC הסתברויות גבוליות, הפיכות בזמן, תהליכי לידה ומוות משואות קולמוגורוב pi, j ( t + ) = pi, j ( t)( rj ) + pi, k ( t) rk, j k j pi, j ( + t) = ( ri ) pi, j ( t) + ri, k pk, j ( t) k j P ( t)
PDF created with pdffactory trial version
הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח
מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1
1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=
את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -
שיעור 10: פרופ' נלקין גייטון
1 נתחיל בחזרה: הבארורצפטורים חשים את כלי הדם, ויורים בקצב שעולה עם לחץ הדם. שיעור 10: פרופ' נלקין- 15.6.08 אם נרצה לשמור על לחץ הדם- נשים אותו על ציר ה- y, ונשים את התכונה המבוקרת על ציר ה- x: התכונה של
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
Vcc. Bead uF 0.1uF 0.1uF
ריבוי קבלים תוצאות בדיקה מאת: קרלוס גררו. מחלקת בדיקות EMC 1. ריבוי קבלים תוצאות בדיקה: לקחנו מעגל HLXC ובדקנו את סינון המתח על רכיב. HLX מעגל הסינון בנוי משלוש קבלים של, 0.1uF כל קבל מחובר לארבע פיני
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
אלגברה מודרנית פתרון שיעורי בית 6
אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:
סימני התחלקות ב 3, ב 6 וב 9
סימני התחלקות ב 3, ב 6 וב 9 תוכן העניינים מבוא לפרק "סימני התחלקות" ב 3, ב 6 וב 9............ 38 א. סימני ההתחלקות ב 2, ב 5 וב 10 (חזרה)............ 44 ב. סימן ההתחלקות ב 3..............................
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
T 1. T 3 x T 3 בזווית, N ( ) ( ) ( ) התלוי. N mg שמאלה (כיוון
קיץ 006 f T א. כיוון שמשקל גדול יותר של m יוביל בסופו של דבר למתיחות גדולה יותר בצידה הימני, m עלינו להביט על המצב בו פועל כוח החיכוך המקס', ז"א של : m הכוחות על הגוף במנוחה (ז"א התמדה), לכן בכל ציר הכוחות
קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.
א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
מתמטיקה בדידה תרגול מס' 13
מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.
אלקטרומגנטיות אנליטית תירגול #2 סטטיקה
Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
פרק - 8 יחידות זיכרון ) Flop Flip דלגלג (
פרק - 8 יחידות זיכרון ) Flop Flip דלגלג ( עד כה עסקנו במערכות צירופיות בהן ערכי המוצא נקבעים לפי ערכי המבוא הנוכחיים בלבד. במערכות אלו אסורים מסלולים מעגליים. כעת נרחיב את הדיון למערכות עם מעגלים. למשל
הגדרה: מצבים k -בני-הפרדה
פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך:
חוק גאוס שטף חשמלי שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך: Φ E = E d כאשר הסימון מסמל אינטגרל משטחי כלשהו (אינטגרל כפול) והביטוי בתוך האינטגרל הוא מכפלה
יווקיינ לש תוביציה ןוירטירק
יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב
פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.
בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
אלגברה ליניארית 1 א' פתרון 2
אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק
פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.
בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית
x a x n D f (iii) x n a ,Cauchy
גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת
כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS
כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.
תרגול 5 פוטנציאל חשמלי ואנרגייה חשמלית
תרגול 5 פוטנציאל חשמלי ואנרגייה חשמלית כפי שהשדה החשמלי נותן אינדקציה לכח שיפעל על מטען בוחן שיכנס למרחב, כך הפוטנציאל החשמלי נותן אינדקציה לאנרגיית האינטרקציה החשמלית. הפוטנציאל החשמלי מוגדר על פי מינוס
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
גמישויות. x p Δ p x נקודתית. 1,1
גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות
רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ
- 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים
הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-
מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות
תרגול #6 כוחות (תלות בזמן, תלות במהירות)
תרגול #6 כוחות תלות בזמן, תלות במהירות) 27 בנובמבר 213 רקע תיאורטי כח משתנה כתלות בזמן F תלוי בזמן. למשל: ωt) F = F cos כאשר ω היא התדירות. כח המשתנה כתלות במהירות כח גרר force) Drag הינו כח המתנגד לתנועת
תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.
בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי
ךוניחה דרשמ לש " ה מיעפ םידומילה
פיזיקה תורת הזורמים תורת החום מותאם לתוכנית הלימודים פעימ"ה של משרד החינוך 1 3 4 7 9 12 17 22 25 26 29 32 36 41 43 45 48 55 63 66 69 77 87 95 100 תורת הזורמים מבוא תוכן עניינים תורת הזורמים הידרוסטטיקה...
גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים
גלים א. חיבור שני גלים ב. חיבור גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים םילג ינש רוביח ו Y Y,הדוטילפמא התוא ילעב :לבא,,, ( ( Y Y ןוויכ ותואב םיענ
אלגוריתמים ללכסון מטריצות ואופרטורים
אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n
2NH 3 (g) 2NO 2 (g) N 2 (g) + 3H 2 (g) N 2 (g) + 2O 2 (g) 2 ΔH>0 ΔH>0 ΔH < 0 ΔH <0
- מרים כרמי שאלה 1 נתונות שתי תגובות כימיות )1( ו-) 2 ) 1. N2(g) + 2O2(g) 2NO2(g) 2. N2(g) + 3H2(g) 2NH3(g) הערך את השינוי באנטרופיה של המערכת בכל אחת מהתגובות הנתונות. הסבר את תשובתך ברמה מיקרוסקופית.
תורת הגרפים - סימונים
תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( )
: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן מעגלי קבל בנוי כך שמטען איננו יכול לעבור מצידו האחד לצידו האחר (אחרת לא היה יכול להחזיק מטען בצד אחד ומטען בצד השני) ולכן זרם קבוע לא יכול לזרום דרך הקבל.עניינינו
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית
חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית הפונציאל החשמלי בעבור כל שדה וקטורי משמר ישנו פוטנציאל סקלרי המקיים A = φ הדבר נכון גם כן בעבור השדה החשמלי וניתן לרשום E = φ (1) סימן המינוס
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
השאלות..h(k) = k mod m
מבני נתונים פתרונות לסט שאלות דומה לשאלות מתרגיל 5 השאלות 2. נתונה טבלת ערבול שבה התנגשויות נפתרות בשיטת.Open Addressing הכניסו לטבלה את המפתחות הבאים: 59 88, 17, 28, 15, 4, 31, 22, 10, (מימין לשמאל),
1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )
הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y
שלומי לוי ייצור חשמל באמצעות אנרגיה סולארית - סקירה טכנולוגית
שלומי לוי ייצור חשמל באמצעות אנרגיה סולארית - סקירה טכנולוגית השמש היא מקור אנרגיה ראשוני עשיר זמין ובלתי נדלהÆ היא מהווה מקור עיקרי לאנרגיה על פני כדור הארץ ויוצרת מקורות אנרגיה רבים שמנוצלים על ידי המין
:ןורטיונ וא ןוטורפ תסמ
פרק ט' -חוק קולון m m e p = 9. 0 = m n 3 kg =.67 0 7 kg מסת אלקטרון: מסת פרוטון או נויטרון: p = e =.6 0 9 מטען אלקטרון או פרוטון: חוק קולון בין כל שני מטענים חשמליים פועל כח חשמלי. הכח תלוי ביחס ישיר למכפלת
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
הרצאה 7 טרנזיסטור ביפולרי BJT
הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP
חפסנ םיגתוממ םיבציימ יראיניל בציי. מ א גתוממ בצי. ימ ב
נספח מייצבים ממותגים מסווגים את מעגלי הייצוב לשני סוגים: א. מייצב ליניארי. ב. מייצב ממותג. א. מייצב ליניארי מייצב ליניארי הינו למעשה מגבר שכניסתו היא מתח DC וכל מה שנכון לגבי מגבר נכון גם לגבי המייצב הנ"ל.
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk
נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X D FF-0 q 0 q 1 Z D FF-1 output clk 424 מצב המכונה מוגדר על ידי יציאות רכיבי הזיכרון. נסמן את המצב הנוכחי q
ריאקציות כימיות
ריאקציות כימיות 1.5.15 1 הקדמה ריאקציה כימית היא תהליך שבו מולקולות (הנקראות מגיבים עוברות שינוי ויוצרות מולקולות אחרות (הנקראות תוצרים. הריאקציה יכולה להתרחש בשני הכיוונים. לפני ההגעה לשיווי משקל יהיה
חשמל ומגנטיות תשע"ה תרגול 12 השראות
חשמל ומגנטיות תשע"ה תרגול 12 השראות השראות הדדית ועצמית בשבוע שעבר דיברנו על השראות בין לולאה לבין השינוי בשטף המגנטי שעובר דרכה על ידי שימוש בחוק פאראדיי ε = dφ m dt הפעם נסתכל על מקרה בו יש יותר מלולאה
אלגברה ליניארית 1 א' פתרון 7
אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות
אלקטרומגנטיות אנליטית תירגול #13 יחסות פרטית
אלקטרומגנטיות אנליטית תירגול #13 יחסות פרטית הקונבנציה המקובלת הינה שמסמנים אינדקסים לורנצים (4 מימדיים) באמצעות אותיות יווניות, כלומר µ, ν = 0, 1, 2, 3 ואילו אינדקסים אוקלידים באמצעות אותיות אנגליות i,
תשובות לשאלות בפרק ד
תשובות לשאלות בפרק ד עמוד 91: ( היבט מיקרוסקופי ) בהתחלה היו בכלי מולקולות של מגיבים בלבד, אשר התנגשו וכך נוצרו מולקולות מסוג חדש, מולקולות תוצר. קיום של מולקולות תוצר מאפשר התרחשות של תגובה הפוכה, בה
c>150 c<50 50<c< <c<150
מוצרים ציבוריים דוגמה ראובןושמעוןשותפיםלדירה. הםשוקליםלקנותטלוויזיהלסלוןהמשותף. ראובןמוכןלשלםעד 00 עבורהטלוויזיה. שמעוןמוכןלשלםעד 50 עבורהטלוויזיה. אפשרלקנותטלוויזיהב- c. האם כדאי להם לקנות אותה? תלוי
רקע תיאורטי פיסיקה 1
רקע תיאורטי פיסיקה 1 30 ביוני 2013 הערה: יתכן וישנן נוסחאות שנלמדו אך אינן מופיעות פה. הרשימות מטה הן ריכוז של התרגולים בקורס ואין לייחס אליהם כאל מקור רפרנס יחיד בקורס (כל הזכויות שמורות לשרית נגר). dx(t)
תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת
תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר
פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז
פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות
שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18
שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר